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Abstract. Starting from a robust, nonparametric, definition of large returns (“excursions”), we study the
statistics of their occurrences focusing on the recurrence process. The empirical waiting-time distribution
between excursions is remarkably invariant to year, stock, and scale (return interval). This invariance is
related to self-similarity of the marginal distributions of returns, but the excursion waiting-time distribution
is a function of the entire return process and not just its univariate probabilities. GARCH models, market-
time transformations based on volume or trades, and generalized (Lévy) random-walk models all fail to fit
the statistical structure of excursions.

1 Introduction

Given a sequence of stock prices s0, s1, . . . recorded at fixed intervals, say every five minutes, let
rn

.
= log sn

sn�1
, n = 1, 2, . . ., be the corresponding sequence of returns. Fix N and define an excursion

to be a return that is large, in absolute value, relative to the set {r1, r2, . . . , rN}. Specifically,
following Hsieh et al. (2012), define the excursion process, z1, z2, . . . , zN :

zn =

⇢
1 if rn  l or rn � u
0 if rn 2 (u, l)

where l and u are, respectively, the 10’th and 90’th percentiles of {r1, . . . , rN}. We call the event
zn = 1 an excursion, since it represents a large movement of the stock relative to the chosen set of
returns. We will study the distribution of waiting times between large stock returns by studying
the distribution of the number of zeros between successive ones of the excursion process. Our
motivation includes:

1. The empirical observation (cf. Chang et al., 2013) that this waiting-time distribution is nearly
invariant to time scale (e.g. thirty-second, one-minute, or five-minute returns), to stock (e.g.
IBM or Citigroup), and to year (e.g. 2001 or 2007).
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2. The waiting-time to large returns is of obvious interest to investors, and much easier to study
if, and to the extent that, it is invariant across time scale, stock, and year.

3. The particular waiting-time distribution found in the data and its invariance to time scale
have implications for models of price and volatility movement. For instance, Lévy processes,
“market-time” models based on volume or trades, and GARCH models are each one way or
another inconsistent with the empirical data.

4. Overwhelmingly, the evidence for self-similarity comes from studies of the univariate (marginal)
return distributions (e.g. evidence for a stable-law distribution), but marginal distributions
leave data models underspecified. Waiting-time distributions provide additional, explicitly
temporal, constraints, and these appear to be nearly universal.

Larger returns can be studied by using more extreme percentiles. Although we have not ex-
perimented extensively, the empirical results we will report on appear to be qualitatively robust to
the chosen percentiles and hence the definition of “large return.” In general, the upper and lower
percentiles index a family of waiting-time distributions that might prove useful to systematically
constrain the dynamics of price and volatility models.

In §2, we study the invariance of the empirical waiting-time distribution. Starting with the Lévy
type models, we first make a connection between the model-based distribution and the geometric
distribution. To be concrete, let S(t) follow the “Black-Scholes model” (geometric Brownian motion)
as an example: d logS(t) = µdt + �dw(t), where w(t) is a standard Brownian motion. Because of
the independent increments property of Brownian motion w(t), the return sequence under this
model is exchangeable (i.e. the distribution of any permutation remains the same). Therefore, the
empirical waiting-time distribution under this model is provably invariant to time scale and to time
period. More specifically, the probability of getting a “large” return, with l =10’th percentile and
u =90’th percentile, is exactly 0.2 at each return interval and the empirical waiting-time distribution
is, therefore, nearly a geometric distribution with parameter 0.2 (see §2.1 for more detail). We
emphasize the these considerations apply without modification not just to the geometric Brownian
motion but to all of its popular generalizations as geometric Lévy processes.

Not surprisingly (cf. “stochastic volatility”), the actual (i.e. empirical) waiting-time distribution
is di↵erent from geometric. But what is surprising is the invariance of this distribution across
time scale, stock, and year. In §2.2 we make an exhaustive comparison of empirical waiting-time
distributions, using trading prices of approximately 300 stocks from the S&P 500 observed over the
eight years from 2001 through 2008. Invariance to timescale is strong in all eight years; invariance
to stock is strong in years 2001–2007 and less strong in 2008; and invariance across years is stronger
for pairs of years that do not include 2008. (We have not studied the years since 2008.) In §2.3,
we will connect waiting-time invariance to self-similarity, being careful to distinguish a self-similar
process from a process having self-similar increments (i.e. distinguish dynamics from marginal
distributions).

Which of the state-of-the-art models of price dynamics are consistent with the empirical dis-
tribution of the excursion process? The existence of a nearly invariant waiting-time distribution
between excursions provides a new tool for evaluating these models, through which questions of
consistency with the data can be addressed using statistical measures of fit and hypothesis tests.
In general, we will advocate for permutation and other combinatorial statistical approaches that
robustly and e�ciently exploit symmetries shared by large classes of models, supporting exact hy-
pothesis tests as well as exploratory data analysis. In §3 we introduce some combinatorial tools for
hypothesis testing and explore the implications of waiting-time distributions to the time scale of
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volatility clustering. We continue with this approach, in §4, with a discussion of stochastic volatility
modeling, as well as “market-time” and other stochastic time-change models. We conclude, in §5,
with a summary and some proposals for price and volatility modeling.

2 Waiting Times Between Large Returns

There were 252 trading days in 2005. The traded prices of IBM stock (sn, n = 0, 1, . . . , 18,899)
at every 5-minute interval from 9:40AM to 3:50PM (seventy five prices each day), throughout the
252 days, are plotted in Figure 1, Panel A.1 Often, activities near the opening and closing are not
representative. To mitigate their influence, we exclude prices in the first ten minutes (9:30 to 9:40)
and last 10 minutes (3:50 to 4:00) of each day. The corresponding intra-day returns, rn

.
= log sn

sn�1
,

n = 1, 2, . . . , 18,648 (seventy four returns per day) are plotted in Panel B. Overnight returns are
not included.
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Figure 1: Returns, percentiles, and the excursion process. A. IBM stock prices, every 5 minutes,
during the 252 trading days in 2005. The opening (9:30 to 9:40) and closing (3:50 to 4:00) prices are
excluded, leaving 75 prices per day (9:40,9:45,. . .,15:50). B. Intra-day 5-minute returns for the prices
displayed in A. There are 252⇥74=18,648 data points. C. Returns, with the 10’th and 90’th percentiles
superimposed. D. Zoomed portion of C with 200 returns. The “excursion process” is the discrete time
zero-one process that signals (with ones) returns above or below the selected percentiles.

We declare a return “rare” if it is rare relative to the interval of study, in this case the calendar
year 2005. We might, for instance, choose to study the largest and smallest returns in the interval,
or the largest 10% and smallest 10%. Panel C shows the 2005 intra-day returns with the tenth and
ninetieth percentiles superimposed. More generally, given any fractions f, g 2 [0, 1] (e.g. 0.1 and

1The price at a specified time is defined to be the price of the most recent trade.
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0.9), define

lf = lf (r1, . . . , rN) = inf{r : #{n : rn  r, 1  n  N} � f ·N} (1)

ug = ug(r1, . . . , rN) = sup{r : #{n : rn � r, 1  n  N} � (1� g) ·N} (2)

where, presently, N = 18,648. The lower and upper lines in Panel C are l.1 and u.9, respectively.
Panel D is a magnified view, covering r1001, . . . , r1200, but with l.1 and u.9 still figured as in equations
(1) and (2) from the entire set of 18,648 returns.2

The excursion process is the zero-one process that signals large returns, meaning returns that
either fall below lf or above ug:

zn = 1rnlf or rn�ug

Hence zn = 1 for at least 20% of n 2 {1, 2, . . . , 18,648} in the Figure 1 example. Obviously, many
generalizations are possible, involving indicators of single-tale excursions (e.g. f = 0, g = .9 or
f = .1, g = 1) or many-valued excursion processes (e.g. zn is one if rn  lf , two if rn � ug, and zero
otherwise). Or we could be more selective by choosing a smaller fraction f and a larger fraction
g, and thereby move in the direction of truly rare events. (There is, then, an inevitable tradeo↵
between the magnitude of the excursions and the sample size; more rare events are studied at the
cost of statistical power.) Here we will work with the special case f = .1 and g = .9, but a similar
exploration could be made of these other excursion processes.

2.1 The role of the geometric distribution

As with the Black-Scholes model discussed in the introduction, any stochastic process with station-
ary and independent increments (i.e. any Lévy process) has exchangeable increments, and hence
exchangeable returns if used as a model for the log-price distribution. What would the excur-
sion waiting-time distribution look like under a geometric Brownian-motion model, or one of its
generalizations to geometric Lévy?

Specifically, assume
d logS(t) = µdt+ �dw(t),

where w(t) is a Lévy process. Then the return sequence

Rk = log S(t0 + k�t)� logS(t0 + (k � 1)�t), 8k = 1, 2, 3, · · · , n (3)

is exchangeable. With the particular percentiles used here, the sequence z1, z2, . . . , zN has 20%
1’s and 80% 0’s. If real returns were exchangeable then the excursion process would be as well,
since the percentiles lf and ug (equations 1 & 2) are symmetric functions of the returns. Hence, the
probability that a 1 is followed immediately by another 1 (waiting time zero) is very nearly 0.2. (Not
exactly 0.2, even ignoring edge e↵ects, because there are a finite number of 1’s – the first 1 of the pair
uses one of them up.) The probability that exactly one 0 intervenes is very nearly (0.8)(0.2)=0.16,
two 0’s very nearly (0.8)(0.8)(0.2)=0.128, and so-forth following the geometric distribution.

In general, the waiting-time distribution for an exchangeable process converges to the geometric
distribution as the number of excursions (number of return intervals) goes to infinity (Diaconis &

2To break ties and to mitigate possible confounding e↵ects from “micro-structure,” prices are first perturbed,
independently, by a random amount chosen uniformly from between ±$0.005.
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Freedman, 1980, Chang et al., 2013). In this sense, the KS distance3 to the geometric distribution
is a measure of departure of a return process from exchangeability, and can be used as a statistic
to calibrate the temporal structure of real price data as well as proposed models of prices and
returns (as will be discussed more deeply in §3 & §4). Figure 2 compares the empirical waiting-time
distribution generated by 93,240 one-minute 2005 IBM returns to the geometric distribution with
parameter 0.20. Obviously there is a substantial departure, characterized by high probabilities of
short and long waits in the real data as compared to the geometric distribution. (The slope of the
P-P curve is greater than one or less than one as waiting-time probabilities are respectively larger
than or smaller than geometric.) Thus, for example, the empirical probability that the waiting
time is zero (zn+1 = 1 given that zn = 1) is about 0.32 instead of 0.20. Indeed estimates of this
probability reliably fall in a narrow range, from about 0.32 to 0.33, independent of the time interval
with respect to which returns are defined, the stock from which the returns are derived, and the
year from which the data is collected. In fact, the entire empirical waiting-time distribution is a
near invariant to time scale, stock, and year, as we shall now demonstrate.
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Figure 2: Geometric(0.2) and empirical waiting times. The empirical waiting-time distribution of
1-minute returns of IBM stock in 2005 was compared with the geometric distribution with parameter 0.2.
Left panel: Log plots for the geometric distribution and the empirical waiting-time distribution. The
x-axis is the waiting times and the y-axis is the log probabilities of the waiting times. Right Panel: P-P
plots for the geometric distribution versus the empirical waiting-time distribution. The KS distance is
the maximum horizontal (= maximum vertical) distance between the P-P curve (shown in blue) and the
diagonal (shown in red).

2.2 Empirical evidence for invariance

Chang et al. (2013) and Hsieh et al. (2012) studied the waiting-time distribution between excur-
sions, i.e. the distribution on the number of zeros between two ones. The empirical waiting-time

3Given two cumulative distribution functions, F1 and F2, the P-P plot is the two-dimensional curve from (0, 0)
to (1, 1) defined by {(F1(t), F2(t) : t 2 R}. The Kolmogorov Smirnov (KS) distance is the maximum vertical (and
horizontal) distance between the diagonal and the P-P plot, which is also the maximum distance between F1 and F2:

dKS(F1, F2) = sup
t

|F1(t)� F2(t)|
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distribution from 2005, for the 18,648 5-minute returns, the 93,240 1-minute returns, and the 186,480
30-second returns of IBM are shown across the top of Figure 3. They are remarkably similar.
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Figure 3: Scale invariance. Top row: Empirical waiting-time distributions captured from 30-second,
1-minute, and 5-minute returns of IBM in 2005. Bottom row: P-P plots for the three waiting-time
distributions taken two at a time, and their corresponding Kolmogorov-Smirnov distances.

Invariance to scale. The bottom row of Figure 3 has three P-P plots that come from taking the
three waiting-time distributions (30-second, 1-minute, and 5-minute, shown in the top row) two at
a time. The KS distances, one for each comparison, are also shown. The distribution of waiting
times between excursions for IBM 2005 returns is strikingly invariant to the return interval. (We
are using dKS here as a descriptive statistic, and not for the purpose of hypothesis testing. These
waiting times are not precisely invariant, and many pairs that look well matched will nevertheless
have small p-values, simply because of the large sample sizes.)

Table 1: Scale invariance, aggregate data. Approximately 300 stocks were tested. Table shows median
KS distances for pairwise comparisons of three time scales (30 seconds, 1 minute, 5 minutes) for each of
the years 2001 through 2008.

year 2001 2002 2003 2004 2005 2006 2007 2008

30 sec vs 1 min 0.0199 0.0109 0.0148 0.0148 0.0163 0.0128 0.0113 0.0103

1 min vs 5 min 0.0253 0.0203 0.0197 0.017 0.0175 0.017 0.0194 0.0143

30 sec vs 5 min 0.0348 0.0247 0.0268 0.0259 0.0264 0.0223 0.0242 0.0172

The phenomenon is not unique to IBM, nor to the year 2005. We tested approximately 300 of
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the S&P 500 stocks for the years 2001 through 2008. The results are summarized in Table 1. In
this regard, 2008 is not an outlier, as can be seen from the last column of the table, and from the
three histograms of KS distances, one for each pair of return intervals, over all stocks tested in 2008
(Figure 4).
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Figure 4: Histogram of KS distances, 2008. Each panel shows the histogram of Kolmogorov-Smirnov
distances between excursion waiting-time distributions at di↵erent time scales in 2008, for approximately
300 stocks.

As we will see shortly, self-similar processes have excursion waiting-time distributions that are
invariant to scale. It is interesting, then, to note that the empirical evidence for waiting-time
invariance is substantially weaker at larger intervals, e.g. using hourly or daily returns. This same
progression is often observed in studies of self-similarity (cf. Mantegna and Stanley, 2000). Possibly,
it can be traced to sample size. Because the return sequences are derived from a single calendar
year, larger return intervals have smaller numbers of returns, and hence a larger variance of the
empirical waiting-time distribution. For example, as a rough estimate, we can expect hourly returns
to multiply the spread of a five-minute-return across-stock histogram of empirical KS distributions
(as in the lower-left panel of Figure 5) by about

p
60/5 ⇡ 3.5, which would substantially obscure

the evidence for invariance. It is also possible that invariance systematically breaks down for larger
return intervals. We have not explored either hypothesis.

Invariance to stock and year. How do the excursion waiting-time distributions of one stock
compare to those of another? For each of the eight years studied we compared the waiting-time
distributions, for 5-minute returns, between all pairs of the 300 or so stocks in our data set. See
Figure 5 and the accompanying table. With the possible exception of 2008, excursion waiting-time
distributions are nearly invariant across stocks.

Finally, we examined the change in waiting-time distributions from year to year. For each stock
and each return interval (30-seconds, 1-minute, 5-minutes), we compared distributions between
pairs of years. Table 2 indicates that waiting-time distributions were typically unchanged during
the period 2001 to 2007, but considerably di↵erent during the financial crises of 2008.

2.3 Connections to self-similarity

Recall that P (t), t � 0, is a self-similar process if there exists H � 0 (“Hurst index”) such that

L{P (�t), t � 0} = L{�HP (t), t � 0}

for all � � 0, where L{Q(t), t � 0} denotes the probability distribution (“law”) of the process Q(·).
In other words, the joint distributions of (P (�t1), P (�t2), . . . , P (�tm)) and �H(P (t1), P (t2), . . . , P (tm))
are the same, for all m, t1, t2, . . . , tm, and � (e.g. Embrechts and Maejima, 2002). Let S(t), t � 0,
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Figure 5: Invariance to stock. Comparisons of excursion waiting-time distributions for 5-minute returns
between IBM and GPS in 2005 (top-left panel) and 2008 (top-right panel). Histograms of KS distributions
for all pairs of stocks (bottom panels) show a breakdown of invariance across stocks in 2008 as compared
to 2005. Table: Summary of year-by-year comparisons of waiting-time distributions across stocks. With
the exception of 2008, waiting times are nearly invariant to stock.

be the price of a stock at time t. Beginning with Mandelbrot (1963,1967), it has often been ob-
served that the marginal distribution of the (drift-corrected) increments in price, or more typically
log price, is nearly self-similar, e.g. log S(�t) � logS(�(t � 1)) has nearly the same distribution as
�H logS(t)� �H logS(t� 1), although di↵erent methods for estimating the exponent H give di↵er-
ent values. Many authors (e.g. Calvet & Fisher, 2002 and Xu & Gencay, 2003) argued that the
exponent is not constant (generally decreasing at larger scales) or that there are actually multiple
exponents, as in the more general multi-fractal models. Within the framework of (single-exponent)
self-similarity, the estimation method of Mantegna and Stanley (1995) is among the most convincing
since it focuses on the centers of return distributions rather than their tails. Mantegna and Stanley

Table 2: Year-to-year changes in excursion waiting-time distributions. Left column: Medians of
KS distances, over all stocks and all pairs of years, 2001 through 2007. Right column: Median distances
over all stocks from the single pair of years, 2005 and 2008. Waiting-time distributions in 2008 di↵er
substantially from those of previous years.

year 2001 through 2007 2005 vs 2008

30-second returns 0.0236 0.0623

1- minute returns 0.0219 0.0681

5-minute returns 0.0228 0.0811
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reported a Hurst index of about 0.71 for the S&P 500, with evidence for self-similarity spanning
three orders of magnitude in the return interval, though as they and others (e.g. Bouchaud, 2001)
pointed out, scaling breaks down at larger intervals.

Additionally, many authors have studied empirical scaling through a variety of statistics that
can be derived from, but are not directly equivalent to, self-similarity. For example, Gopikrishnan
et al. (1999) investigated scaling properties of normalized returns, while Wang and Hui (2001)
studied scaling phenomena using returns divided by their daily average returns. Gencay et al.
(2001) explored wavelet variance, Matteo (2007) used R/S analysis, and Glattfelder et al. (2011)
described 12 scaling laws in high-frequency FX data. Wang et al. (2006) studied the return interval
between big volatilities and showed the persistence of scaling for a range of time resolution scales
(�t = 1, 5, 10, 15, 30 min).

Here we give a brief explanation of the mathematical relationship between self-similarity and
scale invariance of the excursion waiting-distribution. Assume that the drift-corrected log price,
P (·), is a self-similar process. Then, as for the return process, at scale � with drift coe�cient r,

R
(�)
t

.
= log

S(�t)

S(�(t� 1))

= P (�t)� P (�(t� 1)) + �r

) L{R
(�)
t , t � 1} = L{�HR

(1)
t + (� � �H)r, t � 1}

= L{G(�)(R(1)
t ), t � 1}

where G(�)(x) is the monotone function �Hx+ (� � �H)r. Now let Z(�)
n , n = 1, 2, . . . , N , be the ex-

cursion process corresponding to the return process R(�)
n , n = 1, 2, . . . , N , for some scale (interval)

� (e.g. thirty seconds or five minutes). Since percentages are unchanged by monotone transfor-

mations, it follows that L{Z
(�)
n , n = 1, 2, . . . , N} = L{Z

(1)
n , n = 1, 2, . . . , N}, for all � > 0. In

short, self-similarity of the process P (t), t � 0, implies that the excursion process, and therefore its
waiting-time distribution, is invariant to scale.

One family of self-similar models for P , made popular in finance by Mandelbrot’s 1963 paper,
is the family of stable Lévy processes, i.e. the processes with stable, stationary, and independent
increments. But the corresponding returns, R

(�)
1 , R

(�)
2 , . . ., are then iid for all � > 0, and this

violates volatility clustering. This shortcoming (already apparent to Mandelbrot in 1963) has led
to the consideration of other self-similar models, that have stationary, and possibly stable, but not-
necessarily-independent increments. One way to construct such processes is through random time
changes of Brownian motion (Mandelbrot and Taylor, 1967, Clark, 1973, Anderson, 1996, Heyde,
1999, H. Geman et al., 2001). We will return to this approach in §4.3. A more direct approach is
with fractional Brownian motion (FBM), which we will briefly discuss now as an illustration of the
application of the excursion waiting-time distribution in the study of price fluctuations and their
models.

The FBMs are a family of self-similar Gaussian processes, one for each Hurst index H 2 (0, 1].
The particular valueH = 1/2 is the ordinary Brownian motion. Which value ofH best describes the
5-minute excursion waiting-time distribution of the 2005 IBM data? We explored di↵erent values of
H. For each value, we generated 500 samples of the process P and extracted 18,648 returns, along
with the corresponding excursion processes and their waiting-time distributions. (As discussed, in
light of the fact that FBM is self-similar, the waiting-time distribution is invariant to �.) Each
waiting-time distribution has a KS distance to the distribution extracted from the real data. The
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Figure 6: Fractional Brownian motion and excursion waiting times. Left panel: For each Hurst
index H = 0.76, 0.77, . . . 0.89 we generated 500 FBM samples and extracted 18,648 returns, matching the
18,648 returns in the 5-minute 2005 IBM data. The average KS distances between the FBM excursion
waiting times and the empirical IBM waiting times are plotted. The best fit, with KS about 0.046, is at
H = 0.81. Right panel: P-P plot of excursion waiting-time distribution for IBM versus a sample from
the best-fitting FBM. FBM overestimates the probabilities of short and very long waiting times.

averages of the 500 KS distances, for each of H = 0.76, 0.77, . . . , 0.89, are shown in the left-hand
panel of Figure 6. The smallest KS distance over all examined H values was approximately 0.046,
at H = 0.81. As can be seen from the right-hand panel of the figure, in comparison to real returns
the fitted FBM model has too many short and too many long waiting times.

3 Conditional inference, permutations, and hypothesis test-
ing

Our purpose in this section is to introduce some statistical tools that relate the near-invariance of
the excursion waiting-time distribution to the temporal characteristics of the empirical return data,
focusing particularly on the time scale of volatility clustering. In the following section, §4, these
tools will be used to explore some familiar themes in price-dynamics modeling, including implied
volatility, GARCH models, and various approaches to stochastic time change, a.k.a. market time.
The statistical characterization of price and volatility fluctuations is obviously very complicated.
Under the circumstance, model-free statistical methods can be particularly e↵ective tools for probing
dynamics and discerning spatial and temporal patterns. The excursion process itself is an example,
in that it avoids absolute thresholds and model-based parameter estimates. Permutation tests are
another example, and are particularly suitable for relating the excursion process to the time scales
operating in price fluctuations, as we shall now discuss.

3.1 Permutation tests

Returns are not exchangeable. If they were, there would be no stochastic volatility. Whereas we
anticipated a failure of exchangeability, what is not apparent is the time scales involved in this
departure of real dynamics from the basic random-walk models encapsulated by the geometric Lévy
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processes. Are the five-minute returns of IBM locally exchangeable? What if we were to permute
the 12 five-minute returns in each hour; would the price process look any di↵erent, either visually
or statistically? As for visually, there is certainly no obvious “tell,” judging from a comparison of
Panels B and C in Figure 7. Panel B plots the prices of IBM at five-minute intervals from 9:45AM
to 3:45 PM, on a randomly selected day in 2005. Panel C plots a surrogate price sequence, derived
from the original (i.e. the trajectory in Panel B) by permuting, randomly and independently, each
set of twelve returns within each of the six hours. The surrogate sequence is started at the same price
as the original and therefore again has the same price as the original at each ensuing hour. There
is no visual clue that separates the real from the surrogate price sequence, and by our experience
there never is one.

How about statistically? Can we detect a di↵erence in the dynamics? Is there any indication
that separates a real trajectory from its permutation surrogates? If so, how does this separation
depend on time scale? We could as easily permute the set of five-minute returns within each week,
each day, each hour, or each thirty-minute interval. At what time scale does exchangeability break
down? Put di↵erently, at what time scales does volatility clustering operate? These questions can
be systematically and robustly answered through a permutation test, and the resulting departure
of the excursion waiting times between the permuted and original trajectories as measured through
the KS distance.

Let r1, r2, . . . , r18648 be the 18,648 five-minute intra-day returns, as defined in §2. Consider any
statistic T (function of these returns), such as the KS distance between the excursion waiting-time
distribution and the geometric distribution, as examined in Figure 7, Panel A. And consider the
particular “null hypothesis,” Ho, that L{(R⇢(1), R⇢(2), . . . , R⇢(18648))} is invariant to the permuta-
tions ⇢ in a set ⇧, where R1, R2, . . . , R18648 are the random variables associates with the observed
returns. The point is not that we actually believe Ho (among other things, it violates volatility
clustering), but rather that it leads to a measure of departure from exchangeability as determined
by the particular statistic being examined, and the particular set of permutations ⇧. Under the null
hypothesis a sequence of M iid permutations, ⇢1(·), ⇢2(·), . . . , ⇢M(·), chosen from the uniform distri-
bution on the set of permutations in ⇧, produces a sequence of M +1 conditionally iid T ’s, namely
the observed Tobs = T (r1, r2, . . . , r18648) together with one additional value for each permutation:

T⇢m = T (r⇢m(1), r⇢m(2), . . . , r⇢m(18648)) m = 1, 2, . . . ,M

It follows that under Ho

Pr{#{m = 1, 2, . . . ,M : T⇢m � Tobs} � N} 

N + 1

M + 1
(4)

In other words, if N = #{m = 1, 2, . . . ,M : T⇢m � Tobs} then (N + 1)/(M + 1) is an exact p-value
for Ho, in the direction of the alternative Ha that Tobs is larger than would be expected under Ho.4

Panel D of Figure 6 illustrates the test with M = 5,000 and ⇧ unrestricted, i.e. the entire
permutation group on the sequence 1, 2, . . . , 18648. Since Tobs is larger than any of the values of
T evaluated for the surrogate (i.e. permuted) sequences, N = 0 and the test has a p-value of
1

5001 ⇡ 0.0002. As expected, the waiting-time distribution of real returns is not consistent with
exchangeability, and in fact produced the largest deviation from geometric among all of the 5,001
sequences. Suppose now that we restrict ⇧ to include only local permutations, say within each
day, or hour, or twenty-minute period. Then selecting from the uniform distribution on ⇧ is the

4This is an instance of conditional inference, in that the test is conditioned on the particular realization. The
correctness of the p-value follows from its correctness for any realization.
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same thing as independently choosing a permutation for each (non-overlapping) day, or hour, or
twenty-minute period, providing a mechanism for systematically exploring the time scale of volatility
clustering.
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Figure 7: Exchangeability and time scale. The five-minute returns on IBM stock in 2005 were
tested for their departure from exchangeability, as reflected in the excursion waiting-time distribution.
Panel A: P-P plot of the excursion waiting-time distribution of the IBM returns versus the geometric
distribution (corresponding to the waiting time between successes in a Bernoulli sequence with probability
0.2 of success). The distributions would be nearly identical if the returns were exchangeable. Panel B:
Trajectory of IBM prices from 9:45 to 3:45, sampled every five minutes, for a randomly selected day in
2005. Panel C: Same starting price as in Panel B, but with the twelve five-minute returns in each of the
six one-hour intervals randomly and independently permuted. Since the returns within a given hour are
exactly preserved, the stock prices in B and C are the same at 10:45, and at each hour thereafter. The
dynamics governing the trajectories in B and C are not apparently di↵erent. Panel D: Distribution of KS
distances to the geometric distribution, obtained from 5,000 surrogate return sequences corresponding to
five thousand random permutations of the 18,648 IBM five-minute returns. Vertical line (in red) marks the
KS distance (0.131) of the original sequence of returns. Panel E: Test for local exchangeability. Surrogates
were produced by independently permuting every disjoint 20-minute block of four five-minute returns. The
distribution of KS distances was again computed from 5,000 surrogates. In general, tests employing larger
time intervals produce still lower p values. Thus, despite appearances, the evidence strongly points to a
highly significant di↵erence between the trajectories in B and C. Panel F: The ensemble of surrogates
derived from permutations of pairs of returns, for every ten-minute block, are indistinguishable from
the original sequence, with respect to the departure of their excursion waiting-time distributions from
geometric.
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3.2 Exploring time scale

Clearly we cannot treat the entire set of 18,648 IBM five-minute returns from 2005 as exchangeable
(Panel D, Figure 7). In practice, traders adjust for changes in volatility, as measured by � (the
standard deviation of logarithmic returns); returns should only be considered exchangeable within
a time period. But how often should volatility be updated? Are the returns, at least approximately,
exchangeable within days, or perhaps within one-hour or one-half-hour intervals? In general, con-
sider a partitioning of the index set {1, 2, . . . , 18648} into disjoint intervals of length �, where � is a
time span, measured in units of five minutes, over which the returns are presumed to be essentially
exchangeable. We would use � = 74 to test exchangeability within single days (recall that the first
and last ten minutes of each day of prices are excluded), and � = 12, 6, 4, and 2, respectively, to
test exchangeability in one-hour, thirty-minute, twenty-minute, and ten-minute intervals. By virtue
of equation (4), these hypotheses can be tested and exact p-values can be computed by generating
ensembles of surrogate return sequences from ensembles of random permutations, and then compar-
ing the corresponding values of the KS statistic to its observed value. For fixed �, permutations are
drawn iid from the uniform distribution on the set of permutations, ⇧, that preserve membership
in the designated intervals.

Figure 7, Panels E and F, show the results of testing for local exchangeability of the excursion
process in the five-minute IBM data, over twenty-minute (� = 4, Panel E) and ten-minute (� = 2,
Panel F) intervals. Intervals longer than twenty minutes result in smaller p-values. Evidently, if
time-varying volatility is the source of the breakdown in exchangeability, then it is operating at an
extremely high frequency.

In line with the near-invariance of the waiting-time distribution, we find that other intervals,
other stocks, and other years lead to similar results.

4 Time Scale and Stochastic Volatility Models

These observations of non-geometric waiting times and remarkably rapid changes in volatility sug-
gest mechanisms for evaluating the validity of models of price and return dynamics. Which models
and mechanisms are consistent with the observed properties of the excursion process? Stock dy-
namics are highly non-stationary, and stochastic volatility is a compelling modeling tool through
which non-stationarity can be accommodated. We examined implied volatility, GARCH volatility
models, and market-time transformations (trade and volume based) for their consistency with the
invariance of excursion waiting-times and the empirical characteristics of local and global exchange-
ability. We were unable to match the data from any one of these points of view, as discussed in the
following paragraphs.

4.1 Implied volatility

One place to look for a non-stationary volatility process that is commensurate with the breakdown
of exchangeability is in the volatility implied by the pricing of options. Implied volatilities are
forward looking and, as such, not a model for � ! �t in Black-Scholes. But the question here is
not whether they reflect the actual minute-to-minute or hour-to-hour volatilities of their underlying
stocks, but rather whether they include su�ciently rapid changes in amplitude to support the lack
of global and even local exchangeability in the return process.

Eight days of minute-by-minute Citigroup 2008 stock and option prices were sampled from 9:35
AM until 3:55 PM (381 prices per day), and used to compute the minute-by-minute volatilities
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implied by the 2008 April 19 put with strike price 22.5 (left-hand panel, Figure 8). This sequence
was used to produce a corresponding return process, from which an empirical excursion waiting-
time distribution was extracted.5 The volatility trajectory includes substantial fluctuations across
multiple time scales, as is evident from the plot in Figure 8, and it would be reasonable to expect a
failure of exchangeability in the derived return process. To the contrary, the waiting-time distribu-
tion was surprisingly similar to geometric (middle panel, KS=0.02), and in fact the return sequence
was indistinguishable from globally exchangeable, based on the KS statistic and full-interval per-
mutations (right-hand panel). Results for local exchangeability were similar. The experiment again
makes the point that extreme high-frequency fluctuations in volatility might be needed to match the
properties of the real excursion process in the context of a Black-Scholes model with time varying �.
Implied volatilities evidently do not take into account these strong intra-day volatility fluctuations.
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Figure 8: Implied volatility generates exchangeable returns. Eight days of minute-by-minute 2008
Citigroup stock and put prices (strike price 22.5, maturing on April 19, 2008) were used to calculate the
minute-by-minute implied volatility, and to generate simulated minute-by-minute returns from a geometric
Brownian motion with volatility function (� = �t) equal to the implied volatility. Left panel: Minute-
by-minute implied volatility. Center panel: The excursion waiting-time distribution of the simulated
returns closely resembles the geometric distribution, unlike the real one-minute returns for which the P-
P plot against the geometric is essentially identical to the one shown in the upper-left panel of Figure 7
(five-minute returns of IBM). Right panel: Simulated returns were not distinguishable from exchangeable
returns through the KS statistic, despite substantial fluctuations in the implied volatility at multiple time
scales.

4.2 GARCH

We examined the suitability of Engle’s (1982) autoregressive conditional heteroskedasticity (ARCH)
model and its generalization, GARCH (Bollerslev, 1986), for producing excursion processes that
match the statistics of the excursions of real stock returns. We explored a collection of ARCH
and GARCH models by fitting to the one-minute returns from the 2005 IBM stock prices. Over a
wide range of values for the moving-average and auto-regressive orders (q and p, respectively), we
found that GARCH(p, q) models provide a nearly perfect fit to empirical waiting-time distributions,
but fail to match the invariance properties of these distributions across return intervals. We will
show results for the particular model GARCH(10,10), but emphasize that virtually identical results
were obtained for the more commonly used GARCH(1,1) model, as well as every combination of
1  p  10 and 1  q  10 that we tested. Given the ample amount of data (93,240 one-minute

5The scale of the volatility process is irrelevant, since the excursion process is invariant to multiplication of the
returns.
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returns), and given that for 1  p, q  10 the GARCH(p,q) model is included in the GARCH(10,10)
model, we chose to show the results for GARCH(10,10).

After fitting the GARCH parameters (see Table 3 for estimated parameters and their standard
errors), the model was used to produce a full year of simulated one-minute returns. The excursion
waiting-time distribution of the simulated data matches the distribution extracted from the real
data, as indicated by the P-P plot in the upper-left panel of Figure 9, and the small KS distance.
Furthermore, as with the real data, and in contrast to experiments with implied volatility (§4.1),
GARCH simulated returns are not exchangeable, even under permutations confined to two-minute
intervals – see upper-right, lower-left, and lower-right panels, respectively, for results on full ex-
changeability, and four-minute and two-minute exchangeability. In general, the match between
simulated and actual returns was excellent.

Table 3: GARCH parameter estimation. The GARCH(10,10) model (�2
t = ! +

P10
i=1 ↵iR

2
t�i +P10

i=1 �i�
2
t�i) was estimated from 93,240 2005 one-minute returns of IBM stock (Rt, t = 1, 2, . . . , 93240),

using the UCSD Garch Matlab toolbox. The table shows the estimated values and standard errors of the
twenty-one parameters. (Zero values are common due to stability and positivity constraints.)

estimated value standard error estimated value standard error
! 1.5111 0.0000
↵1 0.1445 0.0044 �1 0.0646 0.3472
↵2 0.0758 0.0508 �2 0 0.3514
↵3 0.0427 0.0404 �3 0 0.3200
↵4 0.0368 0.0406 �4 0.2385 0.2767
↵5 0 0.0285 �5 0 0.2305
↵6 0 0.0283 �6 0 0.2140
↵7 0 0.0260 �7 0.1892 0.1739
↵8 0 0.0179 �8 0 0.1994
↵9 0 0.0178 �9 0 0.1862
↵10 0 0.0163 �10 0.1613 0.1038

On the other hand, real stocks produce excursion waiting times that are nearly scale invariant,
as already documented in §2, and illustrated in Figure 3 for the 2005 IBM data. For comparison,
the left-hand panel of Figure 10 reproduces the bottom middle panel of Figure 3, whereas the right-
hand panel shows the corresponding P-P plot for the GARCH simulated data. The KS distance
between one-minute and five-minute waiting-time distributions for the IBM data is 0.005, whereas
the GARCH generated one-minute returns, aggregated to produce five-minute returns, produce a
KS distance of 0.05. In general, GARCH models have poor scaling properties, as already noted in
the discussion of intra-day return intervals in §4 of Andersen & Bollerslev, 1997. In fact, GARCH
models, though elegant and apparently suitable for fitting volatility, are inconsistent in the sense
that in general a process can not obey a GARCH model for both one-minute and k-minute returns,
for any k = 2, 3, ..., as is easily demonstrated analytically.
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Figure 9: Simulated one-minute IBM returns using GARCH. One-minute returns on IBM for all
of 2005 were used to fit a GARCH model, with autoregressive and moving average terms each of order
10 (p = q = 10). Waiting-time distribution between excursions in the simulated returns was a near-
perfect match to the empirical distribution (upper-left panel). Results of permutation tests for global
exchangeability (upper-right panel) and local exchangeability (four-minute intervals, lower-left panel, and
two-minute intervals, lower-right panel) were essentially identical to the results for the real returns (not
shown).

4.3 Market time

There is no reason to believe that a good model for the logarithm of stock prices should be homoge-
neous in time. To the contrary, the random walk model suggests that the variance of a return should
depend on the number or volume of transactions (the number of “steps”) rather than the number
of seconds. The compelling idea that “market time” is measured by accumulated activity rather
than the time on the clock seems to have been suggested first by Mandelbrot and Taylor (1967) and
then worked through, more formally, by Clark (1973). It has been re-visited in several influential
papers since then; see the discussions by H. Geman (2005) and Shephard (2005) for reviews and
references.

Here we employ a simple yet definitive test that rules out the possibility that any function
of volume or number of transactions can render the return process compatible with a geometric
Brownian motion, or for that matter any of its Lévy generalizations. In particular, time changes
based on volume or trade numbers do not transform returns into exchangeable sequences. The key,
then, to ruling out these simple market-time transformations lies in the dynamics; it is not enough
to simply match the marginal distributions of the returns, as we now demonstrate.
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Figure 10: Failure of GARCH model to match waiting-time scale invariance of real returns.
Left panel: P-P plot matching excursion waiting-time distributions for the IBM one-minute to the IBM
five-minute returns (2005). Distributions are nearly identical. Right panel: Same comparison, using
GARCH-generated one-minute returns, aggregated to make a record of five-minute returns. Although
there is an excellent fit to the one-minute data (see Figure 9), the model fails to scale across di↵erent
return intervals.

Formally, let D(t)
.
= log S(t), and start with the customary model D(t) = µt+�w(t), where w is

a standard Brownian motion or a more general process with stationary and independent increments
(i.e. a Lévy process). Volatility clustering is inconsistent with the resulting stationarity and/or
independence of the increments of D (and hence the modeled returns). One remedy is to introduce
a volatility process, � ! �(t), as in the well-known models of Hull and White (1987) and Heston
(1993), or any of a variety of other models for stochastic volatility (cf. Shephard, 2005). Another
remedy is to introduce a market-time process ⌧(t), usually independent of w, and write w(⌧(t)) in
place of w(t). (Actually, the two models are oftentimes equivalent—see, e.g. H. Geman et al., 2001,
Veraart and Winkel, 2010.) Depending on the details of the model for S and for ⌧ , D(t) becomes
µt+ �w(⌧(t)) or µ⌧(t) + �w(⌧(t)).

Assuming that ⌧ is independent of w, Clark (1973) experimented with various functions of the
volume as measures of market time:

⌧(t)� ⌧(s) = f(V (t)� V (s)) 8s  t (5)

where V (t) is accumulated volume and f is monotone increasing. More recently Easley et al.
(2012) provided support for equation (5) by demonstrating “partial recovery of Normality” using
equal-volume returns. On the other hand, Ané and H. Geman (2000) have argued that the number
of trades as opposed to the accumulated volume, is the fundamental determinant of ⌧ (hence
f(T (t)� T (s)) in (5), where T (t) is accumulated number of transactions). Mandelbrot and Taylor
(1967) raised both possibilities.

The typical test shows that the normal distribution is a better approximation of the distribution
of returns when returns are defined by equal intervals of ⌧ rather than equal intervals of “clock
time.” But this is a weak test. The marginal distribution of a process caries no information about
its temporal statistics. Dynamics are more important, but not as easily explored. The excursion
waiting-time distribution is fundamentally about dynamics, and provides an easy and sensitive test
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of whether a time-transformed price process is, even approximately, a geometric Lévy process (e.g.
geometric Brownian motion).

Whether volume-based (viz. equation 5) or trade based (V (t) ! T (t)), let 0 < t1 < t2 <
. . . be an increasing sequence yielding equal increments of ⌧ : ⌧(tk) � ⌧(tk�1) = ⌧(tl) � ⌧(tl�1),
8k 6= l, k, l > 0. If D(t) = µ⌧(t) + �w(⌧(t)) then set Rk = D(⌧k) � D(⌧k�1), and otherwise, if
D(t) = µt + �w(⌧(t)), set Rk = D(⌧k) � D(⌧k�1) �µ(tk � tk�1). (The di↵erence is negligible for
short intervals.) For either model of D and either model of ⌧ (volume-based or trade-based), if the
market-time corrected process is geometric Brownian motion (or more generally Lévy), then the
return sequence R1, R2, . . . constructed in this manner is necessarily iid and therefore exchangeable.

Consider for example Figure 11, where we examine equal-market-time returns on IBM 2005
stock, under the assumption that ⌧ is determined by the number of trades. In particular, returns
were defined on successive intervals containing 110 trades each (corresponding, on average, to five
minutes of clock time). Thus

Rk = D(⌧k)�D(⌧k�1) = log S(t⌧k)� logS(t⌧k�1
)

where t⌧k is the time when the ⌧k-th trade occurred and ⌧k = 110 ·k for all k = 0, 1, 2, . . .. Obviously,
the process R1, R2, . . . is far from exchangeable (right-hand panel) and the waiting-time distribution
is a poor approximation of the geometric distribution (left-hand panel). We examined all combina-
tions of models for D and ⌧ (volume-based and trade-based). Each case produces a figure essentially
identical to Figure 11; these market-time transformations fail to render the returns exchangeable.

By the evidence, neither the number of trades nor the accumulated volume is, in and of itself,
a viable measure of market time. The dynamics of the return process, following a volume or trade-
based time change, do not resemble those of a geometric Brownian motion or any other Lévy process.
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Figure 11: Interval time measured by number of trades. In 2005, there was an average of about
110 trades of IBM stock every five minutes. If “market time” were measured by the number of trades,
and were adequate to transform prices into a Lévy process, then returns over 110-trade intervals would
be exchangeable. Left panel: Excursion waiting-time distribution for equal market-time intervals (110
trades) does not match the geometric distribution. Right panel: Equal-market-time returns are not
exchangeable, as evidenced by the distribution of KS values under permutations. Market time measured
by volume instead of trades also fails to render returns exchangeable.
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5 Summary and concluding remarks

We have given empirical evidence for a new invariant in the price movements of stocks. The
waiting-time distribution between large returns (“excursions”) is nearly invariant to scale (length
of the return interval), stock, and the year of observation. The clustering of excursions is a mani-
festation of the well-studied clustering of volatility. The invariance in the clustering of excursions
therefore constrains proposed models and mechanisms for volatility clustering. Self-similar (log)
price processes have invariant waiting times between excursions, but the evidence for self-similarity
is confined to the distributions on log price increments, and not the processes themselves. Further-
more, scaling indices estimated from return data vary from study to study (Bouchaud, 2001), and
are extremely sensitive to statistical methodology, as might be expected given that most approaches
focus on the tail behavior of the return distributions. By contrast, waiting-time distributions rely on
percentiles, which are robust and non-parametric, and evidently stable given the weight of evidence
for invariance presented in §2.

We have illustrated the possible utility of excursion waiting times by examining some models
for price and volatility dynamics. In general, the failure of even local exchangeability of excursions
(and therefore returns) points to rapid changes in volatility. Thus implied volatility, for example, is
much too smooth (despite its appearance—see Figure 8). ARCH and GARCH models, even of low
order, track volatility su�ciently well to produce simulated returns with excursion waiting times
that are a near-perfect match to empirical waiting times. But unlike real returns, aggregating the
simulated one-minute returns into simulated five-minute returns produces a di↵erent waiting-time
distribution. This might have been anticipated (though not guaranteed) by the observation that
these models themselves lack scale invariance. Finally, we examined the appealing idea of a market-
activity based time change in an e↵ort to remove volatility clustering and restore exchangeability to
the random-walk model. Returns were re-defined with respect to equal increments of market time,
as opposed to clock time, under both volume-based and trade-based measures of market activity.
Neither definition of market time rendered an exchangeable sequence of excursions.

The usual caution about the distinction between statistical significance and scientific significance
bears repeating here. We have introduced exact hypothesis tests that produce very small p-values.
In and of themselves, these values are not particularly interesting given the large sample sizes
involved (e.g. almost 20,000 five-minute returns on IBM stock from 2005). Our focus, instead, was
on the trajectory of p-values under a sequence of global-to-local exchangeability tests, and on the
comparison of p-values between data produced by real returns and data simulated from models.

A more subtle statistical issue concerns the use of aggregated data for inference about temporal
dynamics, especially scaling properties, such as self-similarity. Consider using a year’s worth of
price data (S(t), t 2 [0, T ]) for estimating the joint distribution on successive returns R(�)

1 , . . . , R
(�)
n

over intervals of length �, where

R
(�)
k = log

S(�k)

S(�(k � 1))

(Typically n = 1 and the goal is to study the distribution on returns and its relationship to �.) To
keep things simple, assume that

logS(t) =

Z t

0

�(s)dw(s)

where w is an alpha-stable Lévy process (↵ = 2 when w is Brownian motion), consistent with the
basic geometric random-walk framework, but accommodating non-constant volatility.6 The alpha-

6The other general approach to time-varying volatility is through a time change of w: w(t) ! w(⌧(t)). As
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stable Lévy processes are self-similar, with scaling exponent ↵ 2 (0, 2] (i.e. Hurst index H = 1/↵ 2

[.5,1)). But given the year under study, with its particular sample path of �(t), t 2 [0, T ], logS(t)
is not self-similar: L{logS(�t)} 6= L{�1/↵ logS(t)}.7 Nevertheless, an experimental study, such as
Mandelbrot (1963), Muller et al. (1990), or Mantegna and Stanley (2000), to name just a few,
might well lead to the opposite conclusion, as follows.

Assume for the time being that �(t) is independent of w(t), and path-wise smooth enough to
have negligible fluctuations in intervals of length n�, which is reasonable for all � su�ciently small.
What properties should be expected of the empirical joint distribution, F̂ , on R

(�)
1 , . . . , R

(�)
n :

F̂
R

(�)
1 ,...,R

(�)
n
(r1, . . . , rn) =

�

T

T/�X

k=1

nY

i=1

1
R

(�)
k+i<ri

derived from a year of returns? In particular, which, if any, of the scaling properties of w are inher-
ited by the empirical return distribution? Under the smoothness assumption on �, a straightforward
calculation shows that

F̂
R

(�)
1 ,...,R

(�)
n
(r1, . . . , rn) ⇡ F̂

R
(1)
1 ,...,R

(1)
n
(��1/↵(r1, . . . , rn)) (6)

which is in fact the property that characterizes the increments of a self-similar process, with scaling
index ↵, such as the increments of w itself. The fact that � = �(t) is lost in the aggregation. The

returns R
(�)
1 , . . . , R

(�)
n appear to come from a self-similar process even though they do not.

The implicit assumption behind aggregation is stationarity. In its absence, the aggregated esti-
mator is a mixture of distributions, each generated by w, but mixed with respect to the occupation
measure of �(t)8 over the year-long observation t 2 [0, T ]. Chang and Geman (2013) demonstrated
that the convergence is quite rapid and the approximation in (6) typically holds even when the
return interval, �, is large relative to the fluctuations of �. What does the same reasoning say about
the empirical waiting-time distribution for excursions, as computed over the same time interval?
This is a substantially harder calculation, but in one regard the conclusion is likely to be the same:
if we accept the geometric random-walk model then scale invariance of the empirical waiting-time
distribution for all � su�ciently small is a foregone conclusion. On the other hand, the partic-
ular invariant distribution, including for example the empirical probability of zero wait between
excursions (approximately 0.32), very much depends on the particular occupation measure of �.

In light of these observations, empirical scale invariance in the timing of excursions and for self-
similarity of the price process is at least consistent with the geometric random-walk model, if not
in fact further support for its basic soundness, whether or not the volatility process is stationary.
What is more, the near-invariance of the excursion waiting-time distribution across stocks and years
points to a volatility-generating process with occupation measure that is surprisingly reproducible,
modulo a constant scale. Notice that if non-constant market activity were the source of stochastic
volatility, then its strong correlations across stocks would begin to explain invariance of waiting
times across stocks. Notice also that most days begin and end with relatively high activity, a daily
rhythm which might contribute to the invariance from one era to another.

In light of the results in §4.3, however, we would need to look beyond any simple function of
trades or volume for the relevant measure of market activity (and hence market time). It might be

mentioned in §4.3, in most models the two approaches, �dw(t) ! �(t)dw(t) and w(t) ! w(⌧(t)), come down to the
same thing. For more on conditions of equivalence see Veraart & Winkel (2010).

7logS(t) =
R t
0 �(s)dw(s) but L{logS(�t)} = L{�1/↵

R t
0 �(�s)dw(s)} 6= L{�1/↵ logS(t)}

8The distribution of the random variable �(X) when X is uniform on [0, T ].
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sensible, for example, to view trades as indicating the time of a step in the random walk, and volume
as determining the scale of the distribution on the step size (relating to the ideas of Gabaix et al.,
2003). There is no reason to believe that the relationship between the volume v of a trade and the
scale � = �(v) of the resulting random step would be linear (though presumably it is monotonic).
To the contrary, it would depend on the complexities of supply and demand as might be reflected
in the state and dynamics of the collective order book. In any case, it might be feasible to estimate
�(v), non-parametrically, by maximum likelihood. The test of the model would then be the same:
are returns over equal market-time intervals exchangeable?
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